Charge Regulation during Amyloid Formation of α-Synuclein

Written by
Tinna Pálmadóttir, Anders Malmendal, Thom Leiding, Mikael Lund & Sara Linse
Published on
May 17, 2021
Subscribe to the Labmail
By subscribing you agree to with our Privacy Policy.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Key Takeaways

This paper focuses on the interplay between electrostatics and aggregation in an amyloid system. Rather than changing the pH by titration and recording the response, the authors follow a reaction in an unbuffered system and record the resulting pH change. They also follow the reaction using fluorescence readout and static light scattering in order the pH response to the aggregation reaction.

Abstract

Electrostatic interactions play crucial roles in protein function. Measuring pKa value perturbations upon complex formation or self-assembly of e.g. amyloid fibrils gives valuable information about the effect of electrostatic interactions in those processes. Site-specific pKa value determination by solution NMR spectroscopy is challenged by the high molecular weight of amyloid fibrils. Here we report a pH increase during fibril formation of α-synuclein, observed using three complementary experimental methods: pH electrode measurements in water; colorimetric changes of a fluorescent indicator; and chemical shift changes for histidine residues using solution state NMR spectroscopy. A significant pH increase was detected during fibril formation in water, on average by 0.9 pH units from 5.6 to 6.5, showing that protons are taken up during fibril formation. The pH upshift was used to calculate the average change in the apparent pKaave value of the acidic residues, which was found to increase by at least 1.1 unit due to fibril formation. Metropolis Monte Carlo simulations were performed on a comparable system that also showed a proton uptake due to fibril formation. Fibril formation moreover leads to a significant change in proton binding capacitance. Parallel studies of a mutant with five charge deletions in the C-terminal tail revealed a smaller pH increase due to fibril formation, and a smaller change (0.5 units on average) in the apparent pKaave values of the acidic residues. We conclude that the proton uptake during the fibril formation is connected to the high density of acidic residues in the C-terminal tail of α-synuclein.

Other Publications Featuring Labbot

Biorxiv (Preprint)
August 11, 2025

Phase separation of protein kinase A regulatory subunits is driven by similar inter- and intra-molecular interactions involving the inhibitory segment

Malyasree Giri, Christopher S. Brasnett, Kübra F. Eroglu, Julie Maibøll Kaasen, Alain A.M. Andre, Siewert-Jan Marrink, Frans A.A. Mulder, Magnus Kjaergaard

In the cell, proteins can phase separate to form local, transient compartments that regulate key functions. But what are the driving forces behind this, and how does it relate to other types of protein interactions? To address this, the Magnus Kjærgaard research group in Aarhus developed a framework to quantify the distinct energetic forces governing these interactions.

Read our takeaways
Communications Chemistry
October 1, 2025

Effects of solution conditions on the self-assembly of the chaperone protein DNAJB6b

Andreas Carlsson, Victoria Maier, Celia Fricke, Tinna Pálmadóttir, Ingemar André, Ulf Olsson & Sara Linse

Our cells are kept clean by a host of protein chaperones that prevent the buildup of misfolded proteins linked to dementia and other diseases. In this study, the Sara Linse group takes a close look at one such chaperone, DNAJB6b, exploring how it forms clusters of different sizes under various conditions. This clustering behaviour appears to be central to DNAJB6b’s remarkable ability to suppress protein aggregation.

Read our takeaways
Food Hydrocolloids
June 23, 2025

Tunable self-association of partially dephosphorylated beta-casein

Pernille Lund Rasmussen, Åsmund Rinnan, Søren Bang Nielsen, Anni Bygvrå Hougaard

Adapting milk protein from cows for human infant nutrition requires an in-depth understanding of how the proteins differ. In this collaboration between the University of Copenhagen and Arla Foods Ingredients, the authors explored how calcium and phosphorylation state govern the self-association of industrially prepared β-casein.

Read our takeaways